Innovation

Ethik der künstlichen Intelligenz

Wenn Sie sich ein wenig mit dem Thema der künstlichen Intelligenz befassen, werden Sie schnell auf Fragestellungen stoßen, die über die reine Technologie hinausgehen oder auch über die betriebswirtschaftlichen Aspekte.

Über intelligente Algorithmen verleihen wir Maschinen menschliche Fähigkeiten, und fragen uns richtigerweise ob diese Software allen ethischen Aspekten genügt.


Fünf zentrale Websites zum Thema Visualisierung von Daten

Letzte Woche habe ich über Data-Lakes geschrieben. Richtig interessant werden diese großen Datenspeicher aber erst, wenn man die vielen Daten auch visualisieren kann. Hierfür benötigt man drei Dinge: Inspiration, Frameworks und Designtechniken.

Die Quellen, die ich in der Anlage zum Artikel aufgeführt habe, liefern genau das.


Anforderungen aus Data Science Projekten

Im Zuge der fortschreitenden Digitalisierung wenden sich immer mehr Unternehmen ihren großen Datenbeständen zu, und versuchen aus diesen Daten geschäftsrelevantes Wissen zu extrahieren. Für solche Auswertungen sind Data Scientists nötig, mit ihrem spezifischen Know How und Techniken.

Fragt sich, wo die Stolpersteine im Bereich Data Science liegen, und was solche Projekte erfolgreich macht.


Machine Learning – Erfahrungen der Fast Movers

Dafür, daß es sich derzeit um eines der meistbesprochenen fachlichen Themen in der IT handelt, blicken die Techniken des maschinellen Lernens auf eine erstaunlich lange Geschichte zurück.

Die Economist Intelligence Unit hat zusammen mit der Firma SAP eine Studie veröffentlicht, die zeigt, wie erfolgreiche Firmen diese Technologie heutzutage einsetzen.


Unternehmensgründung und Wachstum

Junge Unternehmen stehen nicht nur vor der Aufgabe, ein tragfähiges Produkt zu entwickeln, sondern sie müssen sich auch um Aspekte, wie das Marketing oder die Positionierung kümmern.

Ein praxisorientierter Guide kann hierbei helfen.


Arbeitsumgebungen für Machine Learning und Data Science

Data Science Projekte oder Machine Learningmodelle bestehen oft aus einer Vielzahl von Modellelementen oder Detailanalysen, die man zusammen betrachten muss.

In der Praxis ist es keine einfache Angelegenheit, den notwendigen Überblick zu behalten. Zwei interessante Bibliotheken füllen diese Lücke.


Buchbesprechung – Produktmanagement für Dummies

Ich habe mir das neue Buch von Lawler und Schure zum Thema Produktmanagement näher angesehen. Wer einen Überblick über die Arbeitsweisen im Produktmanagement sucht, und dabei Wert auf einen leicht verständlichen Text legt, ist meiner Meinung nach mit diesem Buch gut bedient.


Ideenmanagement und Befragungstechniken

Innovative Produkte sind eigentlich in jeder Branche wichtig. Fragt sich, welche Organisationsform besonders innovationsfördernd ist.

Lange ging man davon aus, daß ein großes Netzwerk erforderlich ist. Eine neue Studie zeigt, daß es auch anders geht.


Cloud Computing: Einführung in Kubernetes und Docker

Kubernetes und Docker liefern wichtige Fähigkeiten, die speziell im Cloud Umfeld benötigt werden aber auch On-Promise eingesetzt werden.

Beide Tools sind besonders bei Entwicklern und im DevOps beliebt, lassen sich aber auch in anderen Bereichen einsetzen. Daher sollte man beide Tools einmal gesehen haben.

Heute gibt es eine Kurzeinführung.


Warum Hardwareunternehmen versagen (10 Gründe)

Bei vielen (neugegründeten) Unternehmen besteht das Produktportfolio aus Hardware und aus Software. Dabei kann der Hardwareteil ähnlich komplex werden, wie der Softwareteil.

Es fragt sich, was man falsch machen kann, wenn man Hardware anbieten will.


Verantwortung für die Informationssicherheit übernehmen

Inzwischen haben wohl die meisten Unternehmenschefs und ProduktmanagerInnen die große Bedeutung der Informationssicherheit erkannt. Die Frage ist, wie man entsprechende Strategien entwickelt und umsetzt.


Cluster Economics

Als Produktmanager in einem globalen Markt stößt man früher oder später auf den Begriff der „Cluster Economics“. Prof. M. Porter ist einer der wichtigsten Vertreter dieser Forschungsrichtung.

Angeregt durch den Artikel „How Economic Clusters Drive Globalization“ aus dem HBR habe ich passende Literatur im Internet zusammengestellt, um mich auf den neuesten Stand zu bringen.


Google’s hybrider Forschungsansatz

Google ist bekannt für seine Kreativität und die vielen neuen Ideen, die das Unternehmen ausprobiert und auf den Markt bringt.

Die Firma gilt deshalb oft als ein Leuchtturm für Unternehmen, die ihre eigene Innovationskraft verbessern wollen. Ein Bericht beschreibt Google’s Forschungsansatz.


Wie Innovation wirklich funktioniert

Eine größere Studie zeigt die Wichtigkeit der Einflussfaktoren der Innovation auf. Die Ideenrate steht erwartungsgemäß weit oben. Doch was beeinflußt den Ideenreichtum eines Unternehmens positiv?


Innovationsstrategien – Das Beispiel Faber-Castell

Wir leben in einer schnelllebigen Zeit, in der viele Unternehmen auf exponentielles Wachstum abzielen, und in der eine disruptive digitale Innovation die Nächste jagt.

Faber-Castell ist über 200 Jahre mit dem sehr alten Produkt „Bleistift“ erfolgreich. Ein Interview zeigt, daß man eine ganz andere Vorgehensweise benutzt, um so erfolgreich zu bleiben.


Nutzungsstatistiken in der Produktentwicklung

Spätestens seitdem die agilen Entwicklungsmethoden Einzug in den Entwicklungsprozess gehalten haben, können Nutzungsstatistiken dabei helfen, das Produkt zu verbessern. Hierzu einige Ideen.


EU-Hilfen für die Netzwerk- und Informationssicherheit

Kurz vor dem Ende der Wahlen in Frankreich und in den USA wurde bekannt, daß Hacker in die Webserver der Wahlkampfteams eingedrungen waren, und Dokumente ins Internet gestellt haben.

Dies zeigt, daß die Sicherheit von Softwareanwendungen nicht zu unterschätzen ist. Die EU hilft Unternehmen deshalb mit entsprechendem Know How.


Kursempfehlung „Machine Learning“

Die heutige Kursempfehlung befaßt sich mit dem Themenbereich „Machine Learning“, das derzeit in der Fachwelt heiß diskutiert wird, um Anwendungen intelligent zu machen.


Open SAP-Onlinekurs „Getting Started with Data Science“

Ich habe in den letzten Wochen in „open.sap.com“ an dem Kurs „Getting Started with Data Science“ teilgenommen. Der Kurs ist zwar bald beendet. Sie können sich bei Interesse aber jederzeit die Aufzeichnungen und die Materialien ansehen.

Da ich einiges an Vorwissen zu den dort geschulten mathematisch-statistischen Inhalten mitbringe war es für mich eher ein Auffrischungskurs.


Innovationsstrategie: Emerging Technologies Hype Cycle 2017

In ihrem diesjährigen „Emerging Technologies Hype-Cycle“ setzen die Analysten von Gartner das Thema „Machine Learning“ an die Spitze der Technologien, die sich durch überzogene Erwartungen auszeichnen.

Dinge wie „Augmented Reality“ und „Virtual Reality“ haben das Tal bereits durchschritten, das danach üblicherweise folgt, und stehen kurz vor der Massenanwendung.


Datascience on Apache Spark

Apache Spark™ ist ein Werkzeug zur Verarbeitung und Analyse von großen Datenmengen.

Üblicherweise kommt in Big Data Szenarien, die auf Apache Spark™ laufen, schnell der Wunsch auf, diese großen Datenmengen auch analysieren zu können. Ich habe mir für solche Aufgaben das Statistikpaket „R“ und eine spezielle Bibliothek angesehen, um herauszufinden, ob sich hiermit solche Aufgaben erledigen lassen.


Sentimentanalysen mittels Künstlicher Intelligenz und Statistik

Die Sentimentanalysis, um die es heute geht, wird im Marketing oder in anderen Disziplinen eingesetzt, die darauf angewiesen sind, auf Stimmungen Rücksicht zu nehmen.

Animiert von einem Artikel, der die Stimmungen des neuen US-Präsidenten analysiert, habe ich mir die Verfahren näher angesehen.


Partnerschaft „Künstliche Intelligenz“

Themen wie „künstliche Intelligenz“ oder „Deep Learning“ haben ihren Eingang in die Welt der Softwareanwendungen geschafft.

Große amerikanische IT-Unternehmen haben inzwischen eine Partnerschaft über künstliche Intelligenz gegründet, um die Technologie zu erforschen und weiterzuentwickeln.


High Performance Datenbanken für IoT Szenarien

Ich beschäftige mich derzeit auch privat mit der Frage, wie ich die vielen Daten auswerten und visualisieren kann, die in typischen Internet of Things Szenarien, oder bei der Hausautomatisierung vorkommen.

Dazu habe ich mir die freie, spaltenorientierte Datenbank Druid angesehen.