Posts Tagged ‘Product-Concept’

Big Data Visualisierung – Ein offener Framework von Uber

Die Firma Uber wird zwar in Europa als Taxiunternehmen, und nicht als die Visualisierungsfirma eingestuft, die sie gerne sein würde, trotzdem hat sie eine Visualisierungslösung veröffentlicht, die sehr gut aussieht.

Diese Bibliothek schaue ich mir heute kurz an.


„Open Codes“ am ZKM und das Human Brain Project

Über die Ausstellung „Open Codes – Leben in digitalen Welten“ am ZKM in Karlsruhe bin ich auf das „Human Brain Projekt“ gestoßen.

Dieses EU-Projekt erforscht das menschliche Gehirn und Denken. Es bietet darüberhinaus eine Infrastruktur, in der man z.B. mit virtuellen Robotern experimentieren kann.


Ideenmanagement und Befragungstechniken

Innovative Produkte sind eigentlich in jeder Branche wichtig. Fragt sich, welche Organisationsform besonders innovationsfördernd ist.

Lange ging man davon aus, daß ein großes Netzwerk erforderlich ist. Eine neue Studie zeigt, daß es auch anders geht.


Mit einem Quantencomputer experimentieren

Das maschinelle Lernen, künstliche Intelligenz, oder ganz generell das Lösen von Optimierungsproblemen erfordert Rechnerkapazitäten, und Rechenleistungen, die es heute noch nicht gibt. 

Man setzt deshalb viele Hoffnungen in eine neue Art von Rechnern, genannt Quantencomputer. IBM (R) hat einen kostenlosen Service ins Netz gestellt, mit dem man solche Maschinen ausprobieren kann.


Embedded World 2018

In den letzten Tagen war ich auf der embedded world in Nürnberg, und habe mich schwerpunktmäßig für die Themen „Artificial Intelligence“ und „Industrie 4.0“ interessiert. In diesem Beitrag fasse ich einige Highlights zusammen.


Künstliche Intelligenz und Wohlstand in Europa

Der Wettbewerb zwischen den einzelnen Weltregionen in der Zukunftstechnologie der „künstlichen Intelligenz“ ist sehr intensiv.

Das kommt auch daher, weil inzwischen Jedem (und insbesondere den großen Spielern USA, China und Europa) klar geworden ist, daß intelligente Systeme ein riesiges ökonomisches Potential haben.

Welches sind eigentlich die Effekte, und wie kann die Politik dabei helfen, die Technologie zu erschliessen? Hierzu ist ein zukunftsweisender Artikel erschienen.


Die Ausstellung „Open Codes – Leben in digitalen Welten“ am ZKM

Endlich bin ich am Wochenende in die vielbesprochene Ausstellung „Open Codes – Leben in digitalen Welten“ am ZKM in Karlsruhe gekommen. Dabei handelt es sich um ein neues Konzept, und es geht um die Digitalisierung. Dies sind mindestens zwei gute Gründe, um heute meine Eindrücke zu schildern.


Industrie 4.0 – Trends des Jahres 2018

Anfang des Jahres 2016 hat Professor Klaus Schwab im Handelsblatt einen Artikel über die Trends und Entwicklungen veröffentlicht, die mit der „Industrie 4.0“ verbunden sind.

Derzeit beginnt das Jahr 2018, und wir sind nach wie vor mitten drinnen in diesem Trend. Ich bin davon überzeugt, auch 2018 wird von der „Industrie 4.0“ geprägt sein.


Cloud Computing: Einführung in Kubernetes und Docker

Kubernetes und Docker liefern wichtige Fähigkeiten, die speziell im Cloud Umfeld benötigt werden aber auch On-Promise eingesetzt werden.

Beide Tools sind besonders bei Entwicklern und im DevOps beliebt, lassen sich aber auch in anderen Bereichen einsetzen. Daher sollte man beide Tools einmal gesehen haben.

Heute gibt es eine Kurzeinführung.


Kontrolle von Maschinenintelligenz und Bias

In einer Welt, in der sich zunehmend intelligente Software verbreitet, gewinnt eine zuverlässige Qualitätssicherung der Algorithmen an Bedeutung.

Die Frage ist, wie man qualitätssichernde Prozesse sinnvoll in der Organisation verankert.


Warum Hardwareunternehmen versagen (10 Gründe)

Bei vielen (neugegründeten) Unternehmen besteht das Produktportfolio aus Hardware und aus Software. Dabei kann der Hardwareteil ähnlich komplex werden, wie der Softwareteil.

Es fragt sich, was man falsch machen kann, wenn man Hardware anbieten will.


Machine Learning – Empfehlungen für Onlinekurse

Verfahren der Artificial Intelligence, das Machine Learning und das mathematisch-statistische Rechnen finden nach wie vor rasant Verbreitung in der IT.

Wie Sie weiter unten sehen, habe ich Ihnen schon häufiger Empfehlungen für solche Trainings zusammengestellt, an denen ich auch selbst teilnehme.

Derzeit gibt es wieder interessante Lernmöglichkeiten.


Cluster Economics

Als Produktmanager in einem globalen Markt stößt man früher oder später auf den Begriff der „Cluster Economics“. Prof. M. Porter ist einer der wichtigsten Vertreter dieser Forschungsrichtung.

Angeregt durch den Artikel „How Economic Clusters Drive Globalization“ aus dem HBR habe ich passende Literatur im Internet zusammengestellt, um mich auf den neuesten Stand zu bringen.


Google’s hybrider Forschungsansatz

Google ist bekannt für seine Kreativität und die vielen neuen Ideen, die das Unternehmen ausprobiert und auf den Markt bringt.

Die Firma gilt deshalb oft als ein Leuchtturm für Unternehmen, die ihre eigene Innovationskraft verbessern wollen. Ein Bericht beschreibt Google’s Forschungsansatz.


Wie Innovation wirklich funktioniert

Eine größere Studie zeigt die Wichtigkeit der Einflussfaktoren der Innovation auf. Die Ideenrate steht erwartungsgemäß weit oben. Doch was beeinflußt den Ideenreichtum eines Unternehmens positiv?


Big Data und Daten Journalismus

Daten werden nicht nur in den Unternehmen immer wichtiger, sondern auch im Bereich des Journalismus. Ein Google Newsletter gibt einen guten Überblick – und zeigt auch die Sorgen und Nöte der Journalisten mit der Digitalisierung auf.

Diese sind übrigens ganz ähnlich wie die in den Betrieben.


Big Data Rollen und Teams

Universalgenies sind selten, auch im Bereich der Analytics. Die Entwicklung von Big Data Anwendungen, oder auch Machine Learning Projekte erfordern Mitarbeiterteams, die unterschiedliche Rollen ausfüllen.


Innovationsstrategien – Das Beispiel Faber-Castell

Wir leben in einer schnelllebigen Zeit, in der viele Unternehmen auf exponentielles Wachstum abzielen, und in der eine disruptive digitale Innovation die Nächste jagt.

Faber-Castell ist über 200 Jahre mit dem sehr alten Produkt „Bleistift“ erfolgreich. Ein Interview zeigt, daß man eine ganz andere Vorgehensweise benutzt, um so erfolgreich zu bleiben.


Big Data Anwendungen entwickeln und testen

Intelligente Software und Big Data Anwendungen folgen anderen Paradigmen als „normale“ Softwareanwendungen. Daher erfordert ihre Entwicklung eine besondere Vorgehensweise insbesondere im Bereich der Qualitätssicherung.


Machine Learning – Kursempfehlungen

Machine Learning und Data Sciences gehören derzeit zu den heißen Themen in der IT. An beiden Themenbereichen wird schon lange geforscht und gelehrt.

Daher gibt es eine unübersehbar große Menge an guten Materialien, die den Einstieg erleichtern. Ich habe Online Kurse zusammengestellt, die mir geholfen haben, oder, die mir interessant erscheinen.


Industrie 4.0 – Wandel in der Arbeitswelt

Das McKinsey Global Institut hat eine kleine Interviewserie veröffentlicht, die auf die Folgen der Digitalisierung in der Arbeitswelt eingeht.

Und man versucht dort u.a. die Frage zu beantworten, welche Fähigkeiten zukünftige Arbeitnehmer mitbringen müssen, um jobfähig zu bleiben.


Machine Learning mit Google Blogs

In der letzten Woche hatte ich Google’s TensorFlow™ als eine der möglichen Bibliotheken für das Machine Learning erwähnt.

Da sehr aktiv in diesem Bereicht, bietet das Unternehmen auf weiteren Gebieten nützliche Inhalte, die sich an Anfänger und Fortgeschrittene in Sachen „Machine Learning“ wenden.


Machine Learning mit TensorFlow

Neulich habe ich über ein Rechnercluster geschrieben, das man einsetzen kann, um darauf Big Data Szenarien auszuprobieren, und Machine Learning Algorithmen zu testen.

TensorFlow™ von Google ist eine der möglichen Bibliotheken für das Machine Learning, die man auf diesem Cluster einsetzen könnte. Daneben ist die TensorFlow Dokumentation eingängig geschrieben, und kann damit auch Einsteigern helfen, die verstehen wollen, wie solche Szenarien aussehen.


Machine Learning in einem eigenen Rechnercluster

Viele Big Data Szenarien verwenden den sogenannten SMACK-Softwarestack (Spark, Mesos, Akka, Cassandra, und Kafka) als Laufzeitumgebung. Dabei handelt es sich um frei verfügbare Software, die normalerweise auf Rechnerclustern in Datenzentren installiert wird, um dort Big Data Anwendungen durchzuführen.

Der kleine Raspberry Pi bietet eine interessante Möglichkeit, um sich ein eigenes Rechnercluster im Wohnzimmer aufbauen zu können.