Posts Tagged ‘Product-Concept’

Big Data Anwendungen entwickeln und testen

Intelligente Software und Big Data Anwendungen folgen anderen Paradigmen als „normale“ Softwareanwendungen. Daher erfordert ihre Entwicklung eine besondere Vorgehensweise insbesondere im Bereich der Qualitätssicherung.


Machine Learning – Kursempfehlungen

Machine Learning und Data Sciences gehören derzeit zu den heißen Themen in der IT. An beiden Themenbereichen wird schon lange geforscht und gelehrt.

Daher gibt es eine unübersehbar große Menge an guten Materialien, die den Einstieg erleichtern. Ich habe Online Kurse zusammengestellt, die mir geholfen haben, oder, die mir interessant erscheinen.


Industrie 4.0 – Wandel in der Arbeitswelt

Das McKinsey Global Institut hat eine kleine Interviewserie veröffentlicht, die auf die Folgen der Digitalisierung in der Arbeitswelt eingeht.

Und man versucht dort u.a. die Frage zu beantworten, welche Fähigkeiten zukünftige Arbeitnehmer mitbringen müssen, um jobfähig zu bleiben.


Machine Learning mit Google Blogs

In der letzten Woche hatte ich Google’s TensorFlow™ als eine der möglichen Bibliotheken für das Machine Learning erwähnt.

Da sehr aktiv in diesem Bereicht, bietet das Unternehmen auf weiteren Gebieten nützliche Inhalte, die sich an Anfänger und Fortgeschrittene in Sachen „Machine Learning“ wenden.


Machine Learning mit TensorFlow

Neulich habe ich über ein Rechnercluster geschrieben, das man einsetzen kann, um darauf Big Data Szenarien auszuprobieren, und Machine Learning Algorithmen zu testen.

TensorFlow™ von Google ist eine der möglichen Bibliotheken für das Machine Learning, die man auf diesem Cluster einsetzen könnte. Daneben ist die TensorFlow Dokumentation eingängig geschrieben, und kann damit auch Einsteigern helfen, die verstehen wollen, wie solche Szenarien aussehen.


Machine Learning in einem eigenen Rechnercluster

Viele Big Data Szenarien verwenden den sogenannten SMACK-Softwarestack (Spark, Mesos, Akka, Cassandra, und Kafka) als Laufzeitumgebung. Dabei handelt es sich um frei verfügbare Software, die normalerweise auf Rechnerclustern in Datenzentren installiert wird, um dort Big Data Anwendungen durchzuführen.

Der kleine Raspberry Pi bietet eine interessante Möglichkeit, um sich ein eigenes Rechnercluster im Wohnzimmer aufbauen zu können.


Arbeiten 4.0 – Lebenslanges Lernen

Viele Studien sprechen dafür, daß sich die Berufswelt aufgrund der wachsenden Digitalisierung in den nächsten Jahren grundlegend ändern wird.

Daher wird das lebenslange Lernen immer wichtiger. Der neue Newsletter von PragmaticMarketing.com bring eine weitere Idee: Mitarbeiter sollten konstant auf ihren eigenen Markenwert achten, und diesen fördern.


Mathematische Optimierung mittels OptaPlanner

Im Rahmen des Maschine Learning werden Verfahren, wie neuronale Netze oder Decision Tree Algorithmen eingesetzt, und es werden damit in vielen Fällen gute Erfahrungen gesammelt.

Für manche Problemstellungen bieten sich aber nach wie vor Optimierungsverfahren aus dem Bereich des Operation Research an. OptaPlanner ist eine offene und dabei mächtige Bibliothek.


Machine Learning mit Apache Spark – Einführung

Ich beschäftige mich zur Zeit mit dem Thema „Machine Learning mit Apache Spark“ und habe am Wochenende in der Computerzeitschrift „iX“ einen sehr informativen Artikel hierzu gelesen, und das Beispielprogramm ausprobiert, das darin vorgestellt wurde.


Mit Digital Analytics und Machine Learning den nächsten Produktivitätsschub realisieren

„Big Data Analytics“ und das „Machine Learning“ sind wichtige Schlüsseltechnologien auf dem Weg zur Industrie 4.0. Richtig eingesetzt, unterstützen sie Unternehmen dabei, den nächsten großen Produktivitätsschub zu realisieren.

Derzeit wird viel darüber geschrieben, und es ist deshalb nicht leicht, den Einstieg in das Thema zu schaffen. Daher fasse ich hier Leseempfehlungen zusammen.


Arbeiten 4.0 – Produktivitätswachstum

In vielen entwickelten Volkswirtschaften ist die Geburtenrate schon seit vielen Jahren gering. Das langfristige Wachstum hängt daher vom Produktivitätszuwachs ab.

Dieses Wachstum hat sich aber z.B. in den USA seit 2004 sehr negativ entwickelt. Eine neue Studie zeigt auf, woran das liegen könnte.


Kursempfehlung „Machine Learning“

Die heutige Kursempfehlung befaßt sich mit dem Themenbereich „Machine Learning“, das derzeit in der Fachwelt heiß diskutiert wird, um Anwendungen intelligent zu machen.


Innovationsstrategie: Emerging Technologies Hype Cycle 2017

In ihrem diesjährigen „Emerging Technologies Hype-Cycle“ setzen die Analysten von Gartner das Thema „Machine Learning“ an die Spitze der Technologien, die sich durch überzogene Erwartungen auszeichnen.

Dinge wie „Augmented Reality“ und „Virtual Reality“ haben das Tal bereits durchschritten, das danach üblicherweise folgt, und stehen kurz vor der Massenanwendung.


Datascience on Apache Spark

Apache Spark™ ist ein Werkzeug zur Verarbeitung und Analyse von großen Datenmengen.

Üblicherweise kommt in Big Data Szenarien, die auf Apache Spark™ laufen, schnell der Wunsch auf, diese großen Datenmengen auch analysieren zu können. Ich habe mir für solche Aufgaben das Statistikpaket „R“ und eine spezielle Bibliothek angesehen, um herauszufinden, ob sich hiermit solche Aufgaben erledigen lassen.


Sentimentanalysen mittels Künstlicher Intelligenz und Statistik

Die Sentimentanalysis, um die es heute geht, wird im Marketing oder in anderen Disziplinen eingesetzt, die darauf angewiesen sind, auf Stimmungen Rücksicht zu nehmen.

Animiert von einem Artikel, der die Stimmungen des neuen US-Präsidenten analysiert, habe ich mir die Verfahren näher angesehen.


Partnerschaft „Künstliche Intelligenz“

Themen wie „künstliche Intelligenz“ oder „Deep Learning“ haben ihren Eingang in die Welt der Softwareanwendungen geschafft.

Große amerikanische IT-Unternehmen haben inzwischen eine Partnerschaft über künstliche Intelligenz gegründet, um die Technologie zu erforschen und weiterzuentwickeln.


High Performance Datenbanken für IoT Szenarien

Ich beschäftige mich derzeit auch privat mit der Frage, wie ich die vielen Daten auswerten und visualisieren kann, die in typischen Internet of Things Szenarien, oder bei der Hausautomatisierung vorkommen.

Dazu habe ich mir die freie, spaltenorientierte Datenbank Druid angesehen.


Big Data und High Performance Computing

Amazon hat sich mit seinen Webservices zu einem größeren Cloud Anbieter emporgearbeitet. Man kann dort z.B. Rechenressourcen mieten, um darauf eine ressourcenhungrige Anwendung laufen zu lassen.

Field Programmable Gate Arrays (FPGA) sind aufgrund ihrer Architektur sehr gut für das high Performance Computing geeignet. Amazon bietet nun solche FPGAs in der Cloud an, was besonders im Bereich der Analytics interessant ist.


Der Business Case für das Social Entrepreneurship

Calestous Juma analysiert in seinem neuen Buch Innovation and Its Enemies: Why People Resist New Technologies, die Historie der letzten 600 Jahre, um herauszufinden, wie Leute zu Unterstützern einer neuen Technologie werden.


Arbeiten 4.0 – Abschlussveranstaltung und Weißbuch

Vor einiger Zeit hat das Bundesministerium für Arbeit und Soziales einen öffentlichen Dialog über die Arbeit der Zukunft gestartet. Dazu ist damals ein Grünbuch veröffentlicht worden, das einige Thesen enthielt.

Am 29.11. wird es nun die Abschlussveranstaltung geben, um das Weißbuch vorzustellen, daß aus den Diskussionen entstanden ist.


Leben und Arbeiten im Silicon Valley

Eher zufällig habe ich am Wochenende einen Bericht auf Vox gesehen, der sehr interessant war. Darin ging es um das Silicon Valley, das Leben dort, und um seine besondere Rolle für die Innovationskraft der USA.

Falls der Beitrag irgendwann einmal wiederholt wird, empfehle ich Ihnen, den Bericht nicht zu verpassen (Eine Aufzeichnung habe ich leider nicht gefunden).


SAP HANA: Kostenlose Entwicklerlizenz

Die SAP stellt seit Kurzem kostenlose Entwicklerlizenzen für die schnelle Datenbank SAP HANA zur Verfügung. Mit diesem Angebot können nun auch kleine Unternehmen diese Zukunftstechnologie ausprobieren, ohne sich finanziell zu verausgaben.


Softwarecode als Kapital der Zukunft

Die zunehmende Digitalisierung beginnt langsam damit, die Wirtschaft zu ändern. War früher das Finanzkapital die entscheidende Größe, wurde es später der Mensch und heutzutage avanciert zunehmend die Software, beziehungsweise der Softwarecode zum wettbewerbsentscheidenden Element.


Ausbildung, Innovation und Wohlstand

In der letzten Zeit war in der Tagespresse viel über die Themen „Bildung“, „Innovation“ und „wirtschaftlicher Wohlstand“ zu lesen.

Für Ökonomen, die sich mit der Wachstumsökonomie befassen, ist es keine Neuigkeit, wie sehr sich diese drei Größen gegenseitig bedingen.